1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
//!Implementation of [`Processor`] and Intersection of control flow
//!
//! Here, the continuous operation of user apps in CPU is maintained,
//! the current running state of CPU is recorded,
//! and the replacement and transfer of control flow of different applications are executed.

use super::__switch;
use super::{fetch_task, TaskStatus};
use super::{TaskContext, TaskControlBlock};
use crate::sync::UPSafeCell;
use crate::trap::TrapContext;
use alloc::sync::Arc;
use lazy_static::*;

/// Processor management structure
pub struct Processor {
    ///The task currently executing on the current processor
    current: Option<Arc<TaskControlBlock>>,

    ///The basic control flow of each core, helping to select and switch process
    idle_task_cx: TaskContext,
}

impl Processor {
    ///Create an empty Processor
    pub fn new() -> Self {
        Self {
            current: None,
            idle_task_cx: TaskContext::zero_init(),
        }
    }

    ///Get mutable reference to `idle_task_cx`
    fn get_idle_task_cx_ptr(&mut self) -> *mut TaskContext {
        &mut self.idle_task_cx as *mut _
    }

    ///Get current task in moving semanteme
    pub fn take_current(&mut self) -> Option<Arc<TaskControlBlock>> {
        self.current.take()
    }

    ///Get current task in cloning semanteme
    pub fn current(&self) -> Option<Arc<TaskControlBlock>> {
        self.current.as_ref().map(Arc::clone)
    }
}

lazy_static! {
    pub static ref PROCESSOR: UPSafeCell<Processor> = unsafe { UPSafeCell::new(Processor::new()) };
}

///The main part of process execution and scheduling
///Loop `fetch_task` to get the process that needs to run, and switch the process through `__switch`
pub fn run_tasks() {
    loop {
        let mut processor = PROCESSOR.exclusive_access();
        if let Some(task) = fetch_task() {
            let idle_task_cx_ptr = processor.get_idle_task_cx_ptr();
            // access coming task TCB exclusively
            let mut task_inner = task.inner_exclusive_access();
            let next_task_cx_ptr = &task_inner.task_cx as *const TaskContext;
            task_inner.task_status = TaskStatus::Running;
            // release coming task_inner manually
            drop(task_inner);
            // release coming task TCB manually
            processor.current = Some(task);
            // release processor manually
            drop(processor);
            unsafe {
                __switch(idle_task_cx_ptr, next_task_cx_ptr);
            }
        } else {
            warn!("no tasks available in run_tasks");
        }
    }
}

/// Get current task through take, leaving a None in its place
pub fn take_current_task() -> Option<Arc<TaskControlBlock>> {
    PROCESSOR.exclusive_access().take_current()
}

/// Get a copy of the current task
pub fn current_task() -> Option<Arc<TaskControlBlock>> {
    PROCESSOR.exclusive_access().current()
}

/// Get the current user token(addr of page table)
pub fn current_user_token() -> usize {
    let task = current_task().unwrap();
    task.get_user_token()
}

///Get the mutable reference to trap context of current task
pub fn current_trap_cx() -> &'static mut TrapContext {
    current_task()
        .unwrap()
        .inner_exclusive_access()
        .get_trap_cx()
}

///Return to idle control flow for new scheduling
pub fn schedule(switched_task_cx_ptr: *mut TaskContext) {
    let mut processor = PROCESSOR.exclusive_access();
    let idle_task_cx_ptr = processor.get_idle_task_cx_ptr();
    drop(processor);
    unsafe {
        __switch(switched_task_cx_ptr, idle_task_cx_ptr);
    }
}