1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! Implementation of process [`ProcessControlBlock`] and task(thread) [`TaskControlBlock`] management mechanism
//!
//! Here is the entry for task scheduling required by other modules
//! (such as syscall or clock interrupt).
//! By suspending or exiting the current task, you can
//! modify the task state, manage the task queue through TASK_MANAGER (in task/manager.rs) ,
//! and switch the control flow through PROCESSOR (in task/processor.rs) .
//!
//! Be careful when you see [`__switch`]. Control flow around this function
//! might not be what you expect.

mod context;
mod id;
mod manager;
mod process;
mod processor;
mod signal;
mod switch;
#[allow(clippy::module_inception)]
mod task;

use self::id::TaskUserRes;
use crate::fs::{open_file, OpenFlags};
use crate::task::manager::add_stopping_task;
use crate::timer::remove_timer;
use alloc::{sync::Arc, vec::Vec};
use lazy_static::*;
use manager::fetch_task;
use process::ProcessControlBlock;
use switch::__switch;

pub use context::TaskContext;
pub use id::{kstack_alloc, pid_alloc, KernelStack, PidHandle, IDLE_PID};
pub use manager::{add_task, pid2process, remove_from_pid2process, remove_task, wakeup_task};
pub use processor::{
    current_kstack_top, current_process, current_task, current_trap_cx, current_trap_cx_user_va,
    current_user_token, run_tasks, schedule, take_current_task,
};
pub use signal::SignalFlags;
pub use task::{TaskControlBlock, TaskStatus};

/// Make current task suspended and switch to the next task
pub fn suspend_current_and_run_next() {
    // There must be an application running.
    let task = take_current_task().unwrap();

    // ---- access current TCB exclusively
    let mut task_inner = task.inner_exclusive_access();
    let task_cx_ptr = &mut task_inner.task_cx as *mut TaskContext;
    // Change status to Ready
    task_inner.task_status = TaskStatus::Ready;
    drop(task_inner);
    // ---- release current TCB

    // push back to ready queue.
    add_task(task);
    // jump to scheduling cycle
    schedule(task_cx_ptr);
}

/// Make current task blocked and switch to the next task.
pub fn block_current_and_run_next() {
    let task = take_current_task().unwrap();
    let mut task_inner = task.inner_exclusive_access();
    let task_cx_ptr = &mut task_inner.task_cx as *mut TaskContext;
    task_inner.task_status = TaskStatus::Blocked;
    drop(task_inner);
    schedule(task_cx_ptr);
}

use crate::board::QEMUExit;

/// Exit the current 'Running' task and run the next task in task list.
pub fn exit_current_and_run_next(exit_code: i32) {
    trace!(
        "kernel: pid[{}] exit_current_and_run_next",
        current_task().unwrap().process.upgrade().unwrap().getpid()
    );
    // take from Processor
    let task = take_current_task().unwrap();
    let mut task_inner = task.inner_exclusive_access();
    let process = task.process.upgrade().unwrap();
    let tid = task_inner.res.as_ref().unwrap().tid;
    // record exit code
    task_inner.exit_code = Some(exit_code);
    task_inner.res = None;
    // here we do not remove the thread since we are still using the kstack
    // it will be deallocated when sys_waittid is called
    drop(task_inner);

    // Move the task to stop-wait status, to avoid kernel stack from being freed
    if tid == 0 {
        add_stopping_task(task);
    } else {
        drop(task);
    }
    // however, if this is the main thread of current process
    // the process should terminate at once
    if tid == 0 {
        let pid = process.getpid();
        if pid == IDLE_PID {
            println!(
                "[kernel] Idle process exit with exit_code {} ...",
                exit_code
            );
            if exit_code != 0 {
                //crate::sbi::shutdown(255); //255 == -1 for err hint
                crate::board::QEMU_EXIT_HANDLE.exit_failure();
            } else {
                //crate::sbi::shutdown(0); //0 for success hint
                crate::board::QEMU_EXIT_HANDLE.exit_success();
            }
        }
        remove_from_pid2process(pid);
        let mut process_inner = process.inner_exclusive_access();
        // mark this process as a zombie process
        process_inner.is_zombie = true;
        // record exit code of main process
        process_inner.exit_code = exit_code;

        {
            // move all child processes under init process
            let mut initproc_inner = INITPROC.inner_exclusive_access();
            for child in process_inner.children.iter() {
                child.inner_exclusive_access().parent = Some(Arc::downgrade(&INITPROC));
                initproc_inner.children.push(child.clone());
            }
        }

        // deallocate user res (including tid/trap_cx/ustack) of all threads
        // it has to be done before we dealloc the whole memory_set
        // otherwise they will be deallocated twice
        let mut recycle_res = Vec::<TaskUserRes>::new();
        for task in process_inner.tasks.iter().filter(|t| t.is_some()) {
            let task = task.as_ref().unwrap();
            // if other tasks are Ready in TaskManager or waiting for a timer to be
            // expired, we should remove them.
            //
            // Mention that we do not need to consider Mutex/Semaphore since they
            // are limited in a single process. Therefore, the blocked tasks are
            // removed when the PCB is deallocated.
            trace!("kernel: exit_current_and_run_next .. remove_inactive_task");
            remove_inactive_task(Arc::clone(&task));
            let mut task_inner = task.inner_exclusive_access();
            if let Some(res) = task_inner.res.take() {
                recycle_res.push(res);
            }
        }
        // dealloc_tid and dealloc_user_res require access to PCB inner, so we
        // need to collect those user res first, then release process_inner
        // for now to avoid deadlock/double borrow problem.
        drop(process_inner);
        recycle_res.clear();

        let mut process_inner = process.inner_exclusive_access();
        process_inner.children.clear();
        // deallocate other data in user space i.e. program code/data section
        process_inner.memory_set.recycle_data_pages();
        // drop file descriptors
        process_inner.fd_table.clear();
        // remove all tasks
        process_inner.tasks.clear();
    }
    drop(process);
    // we do not have to save task context
    let mut _unused = TaskContext::zero_init();
    schedule(&mut _unused as *mut _);
}

lazy_static! {
    /// Creation of initial process
    ///
    /// the name "initproc" may be changed to any other app name like "usertests",
    /// but we have user_shell, so we don't need to change it.
    pub static ref INITPROC: Arc<ProcessControlBlock> = {
        let inode = open_file("ch8b_initproc", OpenFlags::RDONLY).unwrap();
        let v = inode.read_all();
        ProcessControlBlock::new(v.as_slice())
    };
}

///Add init process to the manager
pub fn add_initproc() {
    let _initproc = INITPROC.clone();
}

/// Check if the current task has any signal to handle
pub fn check_signals_of_current() -> Option<(i32, &'static str)> {
    let process = current_process();
    let process_inner = process.inner_exclusive_access();
    process_inner.signals.check_error()
}

/// Add signal to the current task
pub fn current_add_signal(signal: SignalFlags) {
    let process = current_process();
    let mut process_inner = process.inner_exclusive_access();
    process_inner.signals |= signal;
}

/// the inactive(blocked) tasks are removed when the PCB is deallocated.(called by exit_current_and_run_next)
pub fn remove_inactive_task(task: Arc<TaskControlBlock>) {
    remove_task(Arc::clone(&task));
    trace!("kernel: remove_inactive_task .. remove_timer");
    remove_timer(Arc::clone(&task));
}